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ABSTRACT

A model problem related to distributed receptivity to free-stream acoustic waves
in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfeld frame-
work, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized
disturbances on the airfoil surface. The results thus complement the earlier work on the
receptivity produced by local variations in the surface suction and/or surface admittance.
In particular, we show that the cumulative effect of the distributed receptivity can be sub-
stantially larger than that of a single, isolated suction strip or slot. Furthermore, even
if the receptivity is spread out over very large distances, the most effective contributions
come from a relatively short region in vicinity of the lower branch of the neutral stability
curve. The length scale of this region is intermediate to that of the instability wave and the
distance from the leading edge, being, in fact, a geometric mean of these two length scales.
Finally, it is found that the receptivity is effectively dominated by a narrow band of I'ourier
components from the wall-suction and admittance distributions, roughly corresponding to
a detuning of less than ten percent with respect to the neutral instability wavenumber
at the frequency under consideration. The results suggest that the drop-off in receptivity
magnitudes away from the resonant wavenumber is nearly independent of the frequency

parameter.



1. INTRODUCTION

The importance of short-scale nonuniformities on the airfoil surface in making the
boundary layer receptive to free-stream disturbances is now well established. Subsequent
to the recent theoretical breakthrough by Goldstein!!! and Ruban[®!, a number of problems
involving different combinations of surface perturbation and free-stream disturbance have
been studied in various flow regimes using both analytical and numerical techniques3—171,
Additionally, experimental studies'®~2!, albeit limited to low-speed flows thus far, have
also contributed greatly to our understanding of these receptivity processes by inspiring or
verifying the theories as well as by delinegﬁpg the range of applicability of the different
approximations used in theories. For reviews on different types of receptivity problems,
see 22-26, and also Ref. 8 listed earlier. Most of this effort has focused on single, isolated
surface inhomogeneities, with the exception of Crouch!®® who examined the nonlocalized
receptivity due to a sinusoidal perturbation in the surface height. However, the conclusions
of Refs. 5 and 6 concerning the magnitude of receptivity are contradictory to each other,
and furthermore, the technique from these references appears suitable only for spatially ho-
mogeneous distributions containing a finite number of Fourier modes. On the other hand,
Choudhari and Streett!¥! have shown how the Goldstein-Ruban ideas can be used in combi-
nation with the local Green’s function concept of Tam?™ for predicting the receptivity over

longer regions by a simple extension of the results obtained for localized nonuniformities.

Here we take the route suggested by these latter investigators to study the acoustic
receptivity due to an elongated region (i.e., much longer than an instability wavelength) of
short-scale variations in the surface-porosity or suction-rate distribution. Suction is a com-
mon means to delay transition by stabilizing the laminar boundary layer, and a prefered
choice for the design of a laminar flow control (LFC) system corresponds to suction dis-
tributed over a major portion of the airfoil surface through an array of porous strips(28—30l
Another option, which is nearly as effective, but is somewhat undesirable from a struc-
tural point of view, involves suction through a series of narrow surface slots in place of the

porous strips. The main benefit of surface-suction is that it inhibits growth of the primary



instabilities3—34] although there have also been some theoretical studies illustrating the
use of suction for controlling the nonlinear stages of transition®*~37). However, as shown
by Kerschen and Choudharil®, an undesirable side effect of these LFC configurations is an
increased receptivity to unsteady free-stream disturbances which may offset the gain (in
terms of reduced disturbance growth) to a certain extent. Thus, for a proper design of
the LFC system, it is essential to understand the various routes, along with the associated

magnitudes, of receptivity induced by the use of suction.

Kerschen and Choudharil®] showed that the porous strip design can cause recep-
tivity to acoustic type disturbances via two different mechanisms, the first being due to
the short-scale mean flow gradients induced by variations in the wall suction, while the
other (and perhaps more important) one is related to the accompanying variations in the
admittance of the porous surface used for suction. They analyzed the acoustic receptivity
in a localized area of short-scale variation, and were able to predict the influence of the
width of a porous strip on the amplitude of the generated instability wave. In this paper,
we consider the receptivity due to the entire suction system in the hope of shedding some

light on the role of spacing between the adjacent suction strips/slots.

In Section 2, we describe how to calculate the receptivity due to surface non-
uniformities spread over a region of arbitrary length. The advantage of the proposed
Green’s function technique is that it provides a convenient tool to analyze arbitrary nonlo-
calized geometries instead of just quasiperiodic distributions. Numerical results for several
representative wall-suction or admittance distributions are presented in Section 3. Partic-
ular emphasis is placed on predicting the receptivity due to individual Fourier components
of the distributed geometry. Conclusions derived from the analysis as well as numerics are

presented in Section 4.
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2. ANALYSIS

In this Section, we describe how the Goldstein-Ruban theory for receptivity in-
duced by a local surface disturbance can be extended to distributed surface irregularities.
However, before doiﬁg that, it will be uéeful to runderrstra;lid the physical ideas behind the
generation of instability waves in a boundary-layer flow. Basically, the instability wave at
any given frequency corresponds to the nearly periodic eigensolution of the small distur-
bance equations about the basic state of the quasi-parallel boundary layer. As discussed
by Kerschenl®l, the free-stream disturbances at this frequency have much different wave-
lengths than that of this eigensolution, and therefore, cannot excite the instability wave
in a direct manner. The length-scale conversion or “tuning” process is brought about by
the scattering of the forced unsteady motion, either at boundary inhomogeneities (such as
variations in admittance or complia;ce of the airfoil surface) or in regions of rapidly vary-
ing (i.e., nonparallel) mean flow. The possible causes for mean flow non-parallelism include
the leading edge as well as locally varying surface conditions in the downstream region,
such as variations in the geometry, suction or blowing velocity, and surface temperature.
In case of boundary layers which are also unstable to steady vortex type of instabilities,
these surface disturbances act as sources of streamwise vorticity that gets amplified farther
downstream['3:2°] Because of their broad variety as well as close proximity to the region of
instability, the surface perturbations constitute a particularly important class of receptivity

agents.

The first theoretical investigations in this class were by Goldstein!!l and Ruban!?,
who used large Reynolds number asymptotics to show how an isolated surface distortion
can interact with a free-stream acoustic wave to generate a Tollmien-Schlichting (T-S) wave
in the region downstream. Since the role of all types of surface perturbations is essentially
the same, namely, to provide the length scale required for coupling the free-stream and
boundary-layer disturbances, the Goldstein-Ruban ideas are applicable, in principle, to this
entire class of receptivity problems (see, for example, Refs. 3-17). In fact, Choudhari and

Streett!!l and Federov et al (private communication) have shown how the Goldstein-Ruban
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framework can also be extended to instability types other than T-S while simultaneously
accounting for additional finite Reynolds number effects. It is this finite Reynolds-number
implementation that will form the basis for the analysis of distributed receptivity to be
presented in this Section. In principle, the problem of receptivity in an LFC configuration
several wavelengths long could also have been tackled by an extension of the triple deck
results for the localized case (Ref. 3). However, from our point of view, it merely seemed
more convenient, and perhaps more accurate as welll!! | to use the finite Reynolds number

approach instead.

In this paper, we will restrict our attention to the low Mach number limit and, fur-
thermore, assume the geometry to be a flat surface with specified admittance distribution;
however, the speed and geometry limitations can be removed quite easily. The density and
kinematic viscosity of the fluid are denoted by p* and v*, respectively, and the incoming
free stream is assumed to consist of a mean flow with speed UZ plus a time harmonic
acoustic perturbation with frequency w* and a streamwise velocity fluctuation of ampli-
tude u* (<< UZ). Since the acoustic wavelength is effectively infinite in the incompressible

limit, the inviscid slip velocity above the surface is given by
wl, = UL (1 + ese7™ 0y, (2.1)

where ¢;,(<< 1) denotes the vanishingly small parameter associated with the free-stream
disturbance amplitude u*_/U% . The unsteady part of the slip velocity is also accompanied

by a time harmonic, but spatially uniform pressure gradient of amplitude —iw™p*ug..

As discussed by Kerschen and Choudharil®, these pressure fluctuations set up an
unsteady mass flux across the porous surface, the distribution of which depends not only
on the surface porosity, but also on the design of other components beneath the surface.
However, the typical magnitude of this unsteady flux is quite small, since the porous surfaces
used for LFC applications usually have rather small porosities. In addition, the design of the
suction systems is such that the surface may be assumed to be “locally reacting”, i.e., the

unsteady flux at any location depends only upon the local details of the LFC configuration,



and can, therefore, be related to the incident pressure fluctuation by specifying the surface

admittance distribution T.

Since the absolute value of the pressure becomes irrelevant in the incompressible
limit, it seenrls”m;)re appropriate to directlyrimpose a short-scale distribution of the un-
steady normal velocity at the wall instead of computing it indirectly by using the surface
admittance distribution in conjunction with the specified acoustic amplitude. Thus, if the
surface admittance 3*p*UZ, is assumed to be of O((EB)) (eS,f) << 1), then the correspond-
ing unsteady velocity at the surface scaled by the acoustic particle velocity, v;/u;,, is also
of O(egf)), and in addition, has the same spatial distribution as the surface admittance
in the low Mach number limit. One may note that specifying the surface admittance, or
equivalently, the unsteady surface velocity, hés the advantage of rendering the results in-
dependént of the details of the suction system design beneath the surface; however, it may
at times prove more useful to solve for the unsteady motion above and below the porous
surface in a coupled manner. Pal et aff'”! have recently used this approach to model the
experiments of Wlezien et al?% on receptivity near a I;orous suction strip with a large back-
ing cavity underneath. Finally, it is also worth noting that in addition to modelling the

wall admittance variation, the unsteady mass flux at the wall may also represent unsteady

disturbances within the suction system, especially in designs with large suction slots.

Thus, we assume that the distributions of both the steady (suction/blowing) and
unsteady (related to admittance) components of the normal velocity at the surface have
weak but short-scale variations with respect to the streamwise coordinate in a region of
arbitrary length located downstream of the leading edge (Figs. la-b). In more precise

terms, these distributions are assumed to be given by

Vi) =D FW Uz, (2.2a)

t The admittance of a surface is defined as the ratio, at the surface, of the (reduced)

unsteady normal velocity to the fluctuating component of pressure.
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and
vi(z*) = €p, €D FO (e UL e (2.2b)

where the nondimensional parameters D and 2 characterize the small magnitudes of

the wall suction-velocity and wall admittance, respectively, while functions FM(z2*) and
F()(z*) denote the (normalized) distributions of these quantities along the streamwise
direction. As mentioned previously, the long wavelength acoustic wave can excite the
boundary-layer instabilities via an interaction with the surface disturbances only if the
length scale of the latter becomes comparable to the instability wavelength in at least a
part of the entire region. However, other than this condition, the distribution functions
FM(2*) and F((z*) can assume any arbitrary form during this analysis. Both of the
above constraints relating to the magnitude and length scale of the VJ*(z*) and v3(z™)

distributions are consistent with the typical designs of LFC systems.

In order to distinguish between the dependence on the longer length scale corre-
sponding to the slow growth of the unperturbed boundary layer and the shorter length scale
of the imposed surface disturbance, we introduce the streamwise coordinates z = z*/£* and
X = z*/L*, respectively. Here z* denotes the distance from the leading edge with the ref-
erence length £* being chosen so as to make z = O(1) (Fig. 1b). The Reynolds number
Ry (= ULE*/v*) is assumed to be sufficlently large so the stability of the unperturbed
mean flow is governed by the classical, quasi-parallel theory. The shorter length scale
L* represents a typical instability wavelength, which is asymptoticaly much larger than
the thickness of the boundary layer. However, it is traditional in the classical stability
theory to use the same shorter length scale for both the streamwise and wall-normal di-
rections, and accordingly, we will identify L* with a typical boundary-layer thickness, and
define the nondimensional wall-normal coordinate as Y = y*/L* and the streamfunction
as 9 = ¢*/(U%L*). Similarly, the nondimensional time t and frequency w will be assumed
to have been normalized by L*/U% and its inverse, respectively. Note that the precise
definition of the reference length scales will be left open for the time being since doing so

will prove convenient for subsequent manipulations.



The streamfunctions ¢}, j = 1,2, are governed by the two-dimensional Navier-

Stokes equation,

Avipl) 9y gvp)  gyld) g3 ypd) 1
ot Y 09X = 0X 9Y? Ry

vipl) =0 , (2.3)

where the suffix j has been introduced to distinguish between the receptivity due to wall
suction (j = 1) and the wall admittance (j = 2) variations. Accompanying the differential

equation (2.3) are the inhomogeneous surface boundary conditions

IY(X,0) _ 1) iy y
X =€, F (‘X) s (2‘-1(1)
and
LN X o to )
59—‘”85\,—’0) = ¢, DFO(X) emit | (2.4b)

corresponding, respectively, to specified distributions of the mean and unsteady components
of the normal velocity at the wall. Since the surface porosities are assumed to be small,
motion at the surface location is nearly in the normal direction, and, therefore, both (1)
and ® can be assumed to satisfy the no-slip condition at ¥ = 0. Finally, each of these
streamfunctions needs to match the imposed free-stream behaviour (2.1) far away from the

wall.

This complétes the formulation of fhe problem. In the remaining part of this
Secﬁibn, we describe how the small-amplitude assumption concerning the surface and free-
stream r[r;e:\,rrturbations can be utilized in determining the instability motion generated in
both cases. This analysis hinges heavily upon the earlier asymptotic analyses!=3} as well
as on the 'ﬁnitr'ei Reynolds number adaptations thereof, for a localized receptivity problem.
Thereforé, only a brief sketch of the derivation will be given here, leaving the interested

reader to find the details in the above mentioned references.

For the doubly-linearized receptivity problems (i.e., both eﬁj), €fs << 1), one
can expa,ndr the flow variables in the form of a dual perturbation series. Such a series was

used originally by Goldstein and Ruban (and subsequently in Refs. 3, 7, 8, 10—12, 186, 26),

8

S T T

JrT——



to obtain closed form solutions to the localized receptivity problem via a rational (triple
deck) treatment of the finite Reynolds number effects and, more recently, in Refs. 4, 5, 15
and 17, to obtain numerical solutions in the framework of the (nonasymptotic) classical

stability equations. The streamfunctions ¥(9) can thus be written in the form
) = Wy(x,Y) + &1 PV (X, V) + es5t0(a, V)e it

s i 2 -
+ e dPUD(X, Ve + 0, ) a B (2.5)

where the factor é; ; is equal to unity for j = 1, and zero otherwise. Each term in this
perturbation sequence represents a unique combination of spatial and temporal scales re-
lated to the physical origin of this perturbation; the dichotomy of streamwise length scales
is symbolized by using the suffixes 0 or 1, while the steady and unsteady components of
motion are distinguished by using upper and lower case letters, respectively. The zeroth-
order term ¥, represents the streamfunction corresponding to the mean boundary-layer
flow which would exist in the absence of both the wall-suction and the free-stream dis-
turbance. Thus, it is steady, and in the streamwise direction only depends upon the slow
coordinate z. For the flat-plate geometry under consideration, it is given by the self-similar
Blasius solution. The quantities ‘I/g” and ¥y denote the first-order perturbations to this
base flow due to the steady surface suction and the unsteady free-stream disturbance, re-
spectively. Accordingly, \I!(ll) is a steady perturbation, but varies on the faster streamwise
scale X of the wall suction distribution, while 9y represent: the acoustic boundary-layer
motion and, therefore, varies on the longer z scale only. T fact, to the leading order in
Reynolds number expansion, it is given by the z-independent Stokes shear wave solution,
which also turns out to be sufficiently accurate for our purpose. One may note that, in
order to generate an instability wave, it is necessary to excite a boundary-layer motion

having shorter scales in both space and time dimensions. The first term in the perturba-
(4)

tion series which posseses this required characteristic is tae O(ey, €’ ) term produced by
the interaction of the O(eguj)) and O(eys,) perturbations. As pointed out by Kerschen and
()

Choudhari® | in the case of suction-induced receptivity, ~his O(eys €3’ ) term corresponds

9



to a temporal modulation of the short-scale mean flow gradients induced by wall suction
variation, while in the wall-admittance problem, it represents the scattering of the incident

acoustic motion by the O(e(,f)) variations in surface admittance.

Our objective here is to solve the receptivity problem and not to obtain the com-
plete second-order asymptotic expansion for the boundary-layer motion. To obtain the
leading-order solution for the receptivity problem, it is sufficient to solve for just the

: 02
Ofegs e(uf)) term and ignore the other second-order terms, namely, 0(62}3) and O(e(uf) )
since they do not possess the desired combination of spatio-temporal scales. Moreover,
(5
1

since we are only interested in the part of ¢;”’ which corresponds to the instability wave,

it is not even necessary to obtain a complete solution for the O(ey, eSﬁ’) term. The way
we accomplish this limited objective is to first isolate the T-S wave produced in each local
region and then sum over all these contributioné t;) obtain the total instability amplitude
at any given location. While carrying out this integration process, we also account for
the changes in phase and amplitude of the instabiiity wave in travelling from its source
location to the observation point. The Weakly—nonpiérallel effects due to streamwise diver-
gence of the base flow are unimportant in calculatiﬁg the local contribution, but they can
become significant during propagation if distances comparable to the body length scale (£*)
are involved. However, these effects can be accomodated post-facto by using results from

standard weakly-nonparallel theory[®l,

(7

Substituting the perturbation expansion (2.5) into (2.3), collecting terms of O (e €45),

and :éiploiting the disparity of length scales between the slowly-evolving solutions (¥, and
¥ ) and the short-scale motion of interest here, we obtain the usual equation governing the

propagation of unsteady disturbances in a parallel shear flow,

0V2¢£J) 0, 8V2¢§]) >, 81/’5]) 1 o (7
5ty ox  ovs ax R v tOle)

_s (0% ov2ul) 33y, oulY (2.60)
TTW\Toy ax T aY® ax ) '
along with a rsur'face boundary condition that is nonzero only for j = 2,
| a(X,00 _ o
a2 @O x 2.6b
B‘Y ( ) ? ( 6 )
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the remaining boundary conditions being all homogeneous. The neglected O(e-) terms
on the left hand side represent the O(L*/£*) weakly-nonparallel terms related to the slow
growth of the unperturbed mean boundary layer. The neglect of these terms is justified, at
this stage, only on the basis of the historical success of the quasiparallel approximation in
producing results which are in satisfactory agreement with the experiments as well as direct
numerical simulations. As we show later, the net receptivity is effectively concentrated in
a relatively short region with a length scale that is intermediate between the instability
wavelength and the distance from the leading edge. Hence, it is also possible to justify the
quasiparallel approximation in this problem on a rational basis. Moreover, as alluded to
above, the nonparallel effects can also be incorporated into the resulting equations in an a

posteriori manner,

As seen from (2.6), 51) satisfies an inhomogeneous differential equation with a
source term arising from the interaction of the short-scale mean flow perturbation 111(11) with
the leading unsteady perturbation 1. On the other hand, since the motion corresponding
to ¢’£2) is driven only by the forcing at the boundary, it seems convenient to illustrate the
solution procedure just for this case, and then quote the final result for the wall-suction
problem. Thus, from now on we will suppress the effects of steady surface suction and
only solve for the streamfunction wgn. We will first obtain the solution for ¢§2) (actually
the T-S wave part of it) by a formal Green’s function technique which was first used by
Tam!?8! in a similar context, and subsequently show how the same solution could also have
been obtained by generalizing the solution obtained for a localized receptivity problem. In
order to obtain the Green’s function G (X, Y;w|X,), set F(P(X) = §(X — X,) where the
subscript s denotes the position of the source. In order to obtain the instability component
of the streamfunction ¥(?, it is again sufficient to solve for just the part of the Green’s
function G which corrresponds to the T-S wave produced by the point source at X = X,.
This can be done quite easily by extracting the residue of the pole, corresponding to the
local T-S wavenumber, of the Fourier transform of GU) with respect to the fast streamwise

variable X. After introducing the local coordinate £ = X — X, and the Fourier transform

Ga,Y) = 712__; / e—1%€ G(Z)(&y) d¢ , (2.7)

—0o0
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equation (2.6) reduces to the Orr-Sommerfeld (0-S) equation

—iw( & —a?)G ¢ ialil'(d—z — )G —iaprge ~ ( i —az)gc‘:m =0
dY? 0 dy? 0 Rs- ' dY?
(2.8a)
subject to
iaGP(a,0) = 1/v2r | (2.8b)

leading to the following expression for the T-S wave produced by the point source at

X=X

1 . . .
G® (X,Y;w|X,) = ors Ey(Y;w, 2) A (w, z,) ¢llO7s(X)=Ors (Xl g x _ X,),
(2.9a)

Here E,(Y; w,z) denotes the (appropii&tely normalized) instability wave eigenfunction for

the physical quantity denoted by g, while A(?) represents the normalized initial amplitude
(i.e., at the source loczﬁion) of the fluctuation in Q, determined numerically as the residue
contribution correspondmg to the pole of G™ at the local T S wavenumber a = ars(z,)
In thlS paper, we will assume the eigenfunctions for dlﬂ'erent flow variables to have been
normahzed to make the maximum of the streamwise velocity fluctuation across the bound-
ary layer equal to unity. The spatial phase 15 of the generated instability wave is given

by the indefinite integral over the slowly varying wavenumber,

X
OTs(X) :/ CYTs(.’L') dX . (29())

We would like to point out that the Green’s function problem (2.8a,b) is mathematically
identical to the v1bratmg ribbon problem first analyzed by Gaster® and subsequently by

others in Refs. 40-41. Moreower Gyrs is also equxvalent to a special case (correspondmg

to a point disturbance) of the “outer” solution for the problem of receptivity due to a local
region of wall-admittance variation (Refs. 3,4). Thus, the function A®) in (2.9a) is identical
to the “efficiency function” of Ref. 4, apart from a scaling factor related to the particular

choice for the length scale L*. The AY) function characterizes the intrinsic efficiency of any

12




localized receptivity process, being dependent only on the types of free-stream disturbance

and surface non-uniformity, along with the mean boundary-layer profile.

Using (2.9a), it is easy to see that the T-S wave part of the total unsteady motion
is given by the integral

X

, 1 - A - i
o = = EiY3,2)e % /A(ﬂ(w,x,) FO(X,) e=®X) {(X - X,) dX,. (2.10)

It is then immediately obvious that this solution could also have been obtained from the

localized solution

Xy
1 ; Ny —iars .
¢ = T E (Y, z; f) A®(w,z) eoTs ¥ /F(‘)(Xs)e iorsXs dX, | (2.11)
X

X; and X being the extremities of the local inhomogeneity, by letting the boundary-layer
properties, i.e., the instability wavenumber ars and the efficiency function A vary over
the length of the receptivity region. Note that the Green’s function technique fails in the
wall-suction case since the inhomogeneity there depends on both the streamwise and wall-
normal coordinate (2.6a). However, the generalization of the localized results in the above
sense is still valid, thus enabling us to relate the T-S wave amplitude directly to the steady

suction distribution via the efficiency function A(}) obtained for the localized problem.

The above results establish a clear connection between the localized and nonlo-
calized receptivity problems; not only is the underlying physical mechanism the same in
these problems, but in fact, the same general equation (namely, 2.10) can be used to de-
termine the instability wave amplitude, given the streamwise distribution of the surface
non-uniformity. This relationship between the two types of problems was also discussed by
Nishioka and Morkovin!?2! in their review of boundary-layer receptivity. For most practical
purposes, the only major difference between the localized and nonlocalized receptivities
corresponds to the length of the integration domain, which, in the latter case, is much
larger than the length scale over which the integrand varies. As a result, it would seem

that the distributed receptivity problems need to be studied separately for each geometry of

13



interest, since it is not possible to separate the influence of surface geometry from that of an

intrinsic efficiency function, AU), as in the localized case (2.11). However, later results will

show that, since the receptivity is still concentrated in a relatively short region compared

to the length scale (¢*) over which AY) varies significantly, decoupling of the above type is
still possible. Furthermore, Eq. (2.10) also suggests that due to the additive effect over a
large number of wavelengths, the receptivity due to distributed nonuniformities could be-
come significantly larger than that for a single, isolated nonuniformity. The extent of this
increase is crucially dependent upon the relative phase and magnitude of the contributions
from different receptivity locations. In this context, it is worth noting the resemblance
between the integral in (2.10) with those arising in wavepacket problems, or to be more
precise, in studies of spatial wave patterns produced by time harmonic point sources. Of
course, physically, the difference between the two types of problems is that, in the wave
pattern case, the value of the integral is determined by the interference between different
wavenumber components emanating from the same spatial location, while in the present
problem, the resultant motion is determined by an interference between waves of the same
type (the T-S mode) but produced by a sequence of sources, the phase variation among
which is decided by the spatial distribution F(9) of the surface nonuniformity. Finally, it is
also possible to draw an analogy between the present problem with diffraction problems in
optics. The solutions (2.9), (2.11) and (2.10) are roughly analogous to the electromagnetic
ﬁeid generated by a compact source and that in a Fraunhoffer and in a Fresnel region,
respectively.

For computational purposes, it is more convenient to express the integral solution
(2.10) in terms of the local Reynolds number R = R;.l/ 2. Hence, identifying the shorter
length scale L* with the local boundary-layer scale, R;.llz z*, and recognizing the invariance
of the right hand side of (2.10) with respect to the choice of the length scale, we obtain the

equation

R
g} = \/g E,(Y; w,R) ¢®7s(R) / A (w, R,) FD(R,) e=®7s(R) [(R - R,) dR,,
(2.12)
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where A(Y) now denotes the efficiency function based on the local length scale, as obtained,
for instance, in studies of localized receptivity problems(®*. All quantities in (2.12) other
than the instability phase @7s and the geometry function F() are slowly-varying functions
of the Reynolds number R. To show the variation of the efficiency function, A"}, with R,
its magnitude is plotted for both the wall-suction and wall-admittance problems in Figs.
2a and 2b, respectively. So that the reader may have an idea about the variation of the
efficiency function, A(9), with R, we have plotted its magnitude for both the wall-suction
and wall-admittance problems in Figs. 2a and 2b, respectively. For reference, the lower
and upper branch locations at each frequency are also indicated by open and filled circles,
respectively, in both these figures. Since the streamwise velocity perturbation is of primary
interest in low-speed flows, the ordinate in these figures corresponds to the choice ¢ = u in
AU, For this same reason, all subsequent results in this paper will also be based on the

streamwise velocity perturbation associated with the generated instability motion.

By differentiating with respect to R, Eq. (2.12) can also be converted to a wave

amplitude equation similar to that obtained by Tam[*",
durs?) 80rs (; 2 () ol
“;"}52 = 6£5 ulf) + \/;A(’) FOD 4 0(e), (2.13)

where ug% denotes the maximum of the streamwise velocity perturbation across the bound-
ary layer at station R, while _a_g_}%i represents twice the slowly-varying instability wavenum-
ber arg, and the O(¢,) terms are again related to the weak non-parallelism of the base flow.
The homogeneous solution of this amplitude equation corresponds to the nearly-periodic T-
S motion which is generated wherever the local spectrum of the geometry function FU)(R)
overlaps with the T-S mode. As seen from Eq. (2.13), when the receptivity occurs contin-
uously over a large number of instability wavelengths, the change in the wave amplitude
at any station is due to a combined effect of the local amplification of the instability waves
generated upstream of the present location and the external input due to local receptivity.

As pointed out by Tam[?"), the relative contribution from the two different inputs depends

on the local amplitude of the instability wave. In the region where the receptivity begins,

15



it is obvious that the local rate of change will be dominated by the contribution from the
external disturbance. However, when the instability amplitude has reached a sufficiently
large magnitude, this contribution becomes much smaller compared to the local amplifi-
cation due to transfer of energy from the mean flow. Hence, one can expect that as the
location corresponding to the upper branch of the neutral stability curve is approached,
the amplitude evolution curve will asymptote to that of a pure T-S wave eigensolution,
Of course, in the immediate vicinity of the upper branch location, where the instability
growth rates are very small, the rate of change in the amplitude is again dominated by
the external input. However, the streamwise extent of this region, which now corresponds
to the shift in the neutral location (i.e., where the disturbance amplitude is stationary), is
rather small, being inversely proportional to the amplitude in this region. Thus, unless the
dominant surface nonuniformities occur far downstream of the lower branch, a case which
is not of much practical interest, one may assume that the maximum instability amplitude

is practically the same as the amplitude at the theoretical neutral location.

Since the maximum instability amplitude is most relevant to an “amplitude” cri-
ferion used for transition prediction, it may be viewed as a global measure of the generated
iﬁsfarbility motion in a distributed—receptivity problem. Moreover, in order to separate the
receptivity, per se, from the linear amplification stage, one could divide this maximum am-
plitude by the amplification factor between the two neutral locations to obtain an “effective
coupling coefficient”, C{J), at the lower branch location, i.e., before the beginning of the
linear amplification stage. Note that a local coupling coefficient(':27] relates the output of
the receptivity process, i.e., the amplitude of the generated instability wave, to its input,
i.e. the free-stream disturbance amplitude. Since we are considering weak surface distur-
bances here, it also varies linearly with the amplitude of the surface disturbance, and will,
therefore, be assumed to be normalized by this latter input as well. The effective cou-
pling coefficient, C9, corresponds to the local coupling coefficient for an equivalent, but
ficticious localized mechanism which has all its receptivity lumped together at the lower

branch station, in the sense of leading to the same maximum instability amplitude. From
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this perspective, one may also gauge the development of the entire receptivity process by
examining the cumulative contribution to this effective coupling coefficient as a function of

the local Reynolds number.

3. NUMERICAL RESULTS

In this Section, we present numerical solutions to the wave amplitude equation
(2.13) for some representative distributions of the wall suction velocity and the wall ad-
mittance. The first type of distribution considered below is a single region of uniform
suction/admittance distribution, i.e., the isolated suction strip case analyzed in Ref. 3
using localized receptivity analysis. Of course, multiple strip configurations are more rele-
vant to LFC[*l and these are analyzed next. Reed and Nayfeh[®! examined theoretically a
number of multiple strip configurations involving different combinations of parameters such
as the total number of strips, spacing between the adjacent strips, and finally, variation in
the amount of suction applied through each strip. These investigators also carried out an
optimization study in order to determine the configuration which has the most beneficial
effect on the stability of the dangerous frequency components. Here, we make an effort to
complement that study by examining what effect the various configurations have on the
receptivity stage. Finally, we consider in detail the case of uniformly spaced porous strips,
where it is possible to arrive at some general conclusions regarding the distributed recep-
tivity problem, by separately analyzing the receptivity due to each Fourier harmonic of the
periodic distribution. In fact, it is also possible to obtain closed-form analytical solutions
for this case which provide extra insight into the distinctive features of the distributed-
receptivity problems; see, for instance, Ref. 42, where we examine this case in connection
with random surface inhomogeneities. In this paper, we will content ourselves with pre-
senting a more physical discussion based on the theory of Ref. 42, which will serve as a

background for the understanding and interpretation of the subsequent numerical results.

Let us begin with the case of a single, isolated suction strip with a uniform suc-

tion/admittance distribution. Figure 3a shows the effective coupling coefficient for both
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mechanisms plotted against the width of this strip for a frequency parameter corresponding
to f (2w v*/U%L?) = 20x 10~°, where we have assumed the suction strip to be centered
on the lower branch location at this frequency. The absissca w in this graph corresponds
to the strip width normalized by the local instability wavelength, whereas the ordinate has
been scaled by the coupling coefficient in the narrow strip limit, w — 0. While varying
the width of the suction strip, we have assumed the level of the surface admittance to be
fixed. However, the suction velocity is varied with w so as to keep the total mass flow rate
constant, since it is the latter quantity which determines the overall reduction in the growth
of the instability wave. The results from the present (nonlocalized) theory are shown by
solid curves in Fig. 3a, while the broken line curves represent results from the localized
analysis in Ref. 3.

The receptivity in discrete configurations is concentrated at the points of disconti-
nuity (Fig. '3brj;rrénd,rﬁéncé, the generated instabiﬁiy motion corresponds to a superposition
of ﬂﬂlre T-S waves generated at each end of the strip. Since both of these waves have identical
arr;[;ﬁtudes in a localized ahalysis, it is obvious that their mutual interference will lead to a
completé éancellation of each other for integer values of w, Wheréas a mutual reinforcement
will result for w = n + 1/2 ¥, In the non-localized analysis, variation of boundary-layer
properties between the 7tw0 ends alters this simple scenario by affecting both the rglative
amplitude and phase of the T-S waves generated at the two ends of the strip. In the partic-
ular case shown in Fig. 3a, AQ) and A®) decrease in magnitude by approximately 9% and
23%, respectively, across the two ends of the strip when w = 5. However, the effect of these
variations appears to be pronounced only in the vicinity of the extrema of the coupling
coefficient curve, especially for w > 2.0. Of course, such wide strips are not very relevant
to LFC, except possibly at rather high frequencies where the instability wavelength is quite
small. Nevertheless, this simple example serves to illustrate how variations in boundary-
layer propertri(; écross the region of receptivity start to become significant as this region

becomes elongated in its streamwise extent.
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Next, consider the wall-suction and wall-admittance distributions corresponding
to multiple strip configurations. The objective here is to assess the effects of large-scale non-
uniformities due to the concentration of suction in certain parts of the airfoil chord. The
different cases examined as part of this study are listed in Table 1, and will be summarized
now. Note that in their stability related investigation, Reed and Nayfeh only considered
the effects of applying suction between the two neutral branches. However, such may
not always be the case. In fact, the hybrid LFC approach combines the use of suction
in the leading edge region with a favorable pressure gradient in the mid-chord region for
reducing the growth of boundary-layer instabilities(??!. Hence, we examined the receptivity
due to uniform suction applied through regularly-spaced suction strips in both the front
and/or mid-chord regions (cases i-iii in Table 1). Figure 4 shows the cumulative variation
in the effective coupling coefficient for these three cases. As one can see from case iii, the
receptivity is distributed quite symmetrically on both sides of the lower branch station,
with the strips closer to the neutral station being more effective than those away from
it. Thus, the contribution to IC(j)| from strips 13 and 14 (which are closest to Rip.) is
O(100) in this case, while that of number 1 and 24 is only about O(1) or smaller. This is
to be expected since the instability waves generated close to the lower branch location can

undergo the highest possible amplification before reaching the upper branch.

Reed and Nayfeh also studied the effects of non-uniformly distributed suction, and
found that increased amounts of suction in the vicinity of the two neutral branches was
particularly beneficial for reducing the instability amplification (Figs. 14-16 vs. Figs. 20-22
in Ref. 33). On the other hand, a configuration involving twice the amount of suction in
the middle third of the strips was found to be sub-optimal (Figs. 17-19 in Ref. 33). In
contrast to this, we found that increasing the amount of suction by 20% in the two neutral
zones (while reducing the suction in the middle third of the strips by 40% in order to keep
the total suction the same) increased CM by approximately 20% (case iv) as compared
to the case of uniform distribution, (ii). On the other hand, the suboptimal configuration

from the viewpoint of stability decreased the receptivity by 25% (case v). This behaviour
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suggests that the requirements for optimizing the receptivity and stability processes may
at times counter to each other. Note that the gains obtained by optimizing the suction
distribution for reduced amplification are not overly spectacular corresponding to reduction
of about 3-4% in the N-factor or equivalently, instability amplitudes which are smaller by
a factor of 20-30%. Since the results above indicate that comparable benefits may also be
expected from the optimization of the receptivity stage, serious consideration should be
given to the question of combined optimization methods whenever the overall receptivity

is dominated by the suction/admittance-induced receptivity.

Before moving on to the next casé, we wou]& liké to point out that the suctjon
§011ﬁguration used by Reed and 7Na;'7feh[33] involved 5/8H wide s&ipé which were spaced
;ather far apart (4.5"). Since we felt that this set of dimensions represented too small a
ratio for the strip width to the spacing bef\veen the strips; we chose a value of 0.6 for this
ratio in the above calculations, and assumed the strip spacing to be equal to the neutral T-S
wavelength at the frequency being considered (f = 20 x 10~8). The strip spacings in actual
desigrr:lsiare likely to be even smaller than the T-S wavelength, but the above conclusions
concerning the influence of the diﬁ'erenf types of spafially inhomogeneous distributions are
not likely to depend upon either the width of the étrips or the spacing between them. The
influence of strip spacing on the receptivity due to wall suction/admittance distributions

that are homogeneous on the longer length scale of the receptivity process will be analyzed

in the remaining part of this Section.

Since distributions of this type can be analyzed in terms of their individual Fourier

harmonics, we now consider spatial distributions of the form

FUY = ¢i8u(R) where % = 2a,(R) = 4%% , (2.14)
Ry beiﬁé the Reynolds number based on the dimensional wavelength A\*(= 2r/a%) of

the surface distribution, while a, denotes the dimensionless wavenumber based on the

sféé&iy-\'arying' local length scale, L*. The distributions given by (2.14) serve as models

for deéignrsjinvolving regularly-spaced suction strips (with uniform suction levels) which
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extend over a significant portion of the airfoil chord. Discrete distributions of this type can
essentially be viewed as a continuous area suction (which does not produce any receptivity)
with oscillatory components corresponding to various harmonics which can be analyzed
independently of each other.
Now consider the integral form of the solution (2.10) for the above case,
R

¢y = \EEQ(Y; O / A (w, B,y e ] (aw=ars)R gp (9 15)
which shows that in regions where the forcing wavenumber a,, is significantly different
from the eigenmode wavenumber ars, the integrand oscillates on the shorter streamwise
scale corresponding to 27/(a’g — «f,), resulting in a cancellation of contributions from
adjacent source locations. The integral is then end-point dominated, implying that the
only receptivity occurs at the extremes of the surface inhomogeneity distribution. To
understand this point more clearly, one may note that the wide, isolated strip considered
before may also be viewed as a special case of the spatially-periodic distribution, having
a zero wavenumber throughout the interior region. Recall that Fig. (3b) showed how the

receptivity in this case is nearly localized to the end-points of the suction strip.

Another way to look at the spatially-periodic case is to consider it in the context
of the wave amplitude equation (2.13). From this viewpoint, when a, — ars is 0(1),
the particular solution of (2.13) (which is proportional to the wall-disturbance phase Ou)
is effectively decoupled from the eigenmode solution (which is proportional to the T-S
phase Or5), and, therefore, cannot transfer energy to the instability wave. In the other
extreme, when the two wavenumbers are exactly equal, which can only occur at a neutral
station since we are considering completely periodic surface disturbances, contributions
from the adjacent locations are in phase with each other, thus summing up to very high
levels of receptivity. Of course, the slow variations in the boundary-layer profile change the
instability wavenumber gradually, thereby making the two phases uncorrelated at far away

distances. In other words, the forcing is detuned with respect to the instability wave far
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upstream of the neutral station; it is locally resonant near the neutral station and detuned

again far enough downstream.

The length scale over which the resonance lasts, and, hence, over which the local
contributions add up directly, would determine precisely how much larger the effective
coupling coefficient is when compared to the localized case. The magnitude of this ratio

can easily be seen to be of O( Ri{f) by inspecting the asymptotic approximation

ﬁEq(Y; w, Rib.) AD(w, Ry p)

\/l (g’%}%i - %'?‘L)RzR'_b_

obtained by exploiting the local stationarity of the integrand phase, ©, — O7g, at the

o -

; (2.16)

i - [42] i i day, _ dars ; :
resonance location R = Ry, . The dispersion factor (ﬁ Tk )R=Ru,‘ is essentially

a measure of how fast the forcing becomes out of “tune” with the eigenmode. As discussed
in Ref. 42, the imaginary part of dars/dR is larger than its real part for all frequencies,
thereby suggesting that the detuning effect is primarily due to growth rate variation in the
vicinity of the neutral curve as against the variation in the phase velocity. As mentioned
at fhe Vbegi’nﬂing of this section, the above ideas can be put on a more rigorous basis,
which also pérmits the analysis of more general near-resonant geometries (corresponding
to arbitrary modulations of the periodic forcing on the resonance scale), and the reader is
refered fo Ref. 42 for the details of this analysis. Finally, one may also point out that since
the result (2.16) is independent of the nature of the surface-nonuniformity, it also confirms,
as well as explajn;, the more recent computations by Crouch (Ref. 5), where he found the
receptivity due to surface waviness to be “two orders of magnitude” larger than that due to

an isolated roughheés element, as against his earlier findings (Ref. 6) that the receptivity

is comparable in both cases.

We now consider the question of numerically solving the wave amplitude equation

for this case. A crucial difference here from the discrete configurations examined previously

speciﬁcétion of an initial condition for the numerical integration. However, the periodic
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distributions have an infinite support, and in order to avoid starting the integration right
from the leading edge, one has to specify an appropriate initial condition at some finite

distance downstream.

TamP”l, who examined the acoustic receptivity in the absence of any surface
disturbance, utilized a homogeneous initial condition for solving the amplitude equation.
However, the acoustic wavenumber is largely different from the instability wavenumber in
low-speed flows. Hence, the resonance condition is never satisfied, and as argued in the
previous paragraph, there would be little resultant receptivity in the entire region of inte-
gration. Whatever small amplitudes one finds by the numerical integration process would
essentially be dominated by the end-point contributions. This only suggests the inappro-
priateness of the numerical treatment, since the inflow location was chosen on a completely
artificial basis. Furthermore, setting the initial condition to zero automatically gives rise
to both the particular and the eigenmode solutions right at the inflow boundary, each
having the same (initial) amplitude but opposite phase. Once generated, these two solu-
tions remain decoupled from each other, effectively propagating independently throughout
the region of integration. Thus, Tam’s argument that the receptivity only occurs at the
start of integration is correct mathematically but not physically, having stemmed from the
unphysical initial conditions as discussed above. One should also note that, in his case,
the amplitude of the particular solution is essentially equivalent to the amplitude of the
free-stream disturbance, thus being independent of the local Reynolds number. Moreover,
since Tam imposed the initial condition at R =~ 378, i.e., fairly close to the neutral location
(R = 576) of the frequency being considered (f = 56 x 107%), the inflow-generated T-S
wave did not decay much (by a factor of ~ 1/5) before reaching the neutral station. Hence,
the calculated coupling coefficients were found to be O(1), and also to be insensitive to

small changes in the inflow Reynolds number.

In our case, provided the resonance condition is satisfied exactly, or nearly so,
the receptivity is confined to a relatively short region in the interior, and we adopt the

viewpoint that, as long as the inflow location is chosen to be sufficiently far upstream
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of the lower branch, the physical decay of the instability wave in the region upstream of
R, also serves to damp out any errors due to inappropriateness of the initial condition.
Thus, we found that the somewhat ill-founded homogeneous initial condition yields very
good agreement with the results obtained from the more rational inhomogeneous initial

condition corresponding to a nonzero particular solution but a zero eigenmode.

Figure 5a shows the variation of the wave amplitude in the wall-admittance prob-
lem for the resonant distribution corresponding to o, = ars at R = Ry, for f = 20 x 1075,
The cumulative contribution to the effective coupling coefficient, as well as its rate of change
with respect to the local Reynolds number, are plotted in Figs. 5b and 5c, respectively.
The lower and upper branch locations at this frequency are indicated by circles in Figs.
5a-5¢. Note that the ordinate in Fig. (5a) corresponds to the total amplitude, i.e., sum of
both the particular and homogeneous solutions. The numerical calculation in this case es-
sentially involvés integrating across the resonance region, where both solutions are linearly
dependent by virtue of having an identical phase variation to the leading order. This im-
plies that a unique decomposition of the total solution into its particular and homogeneous
components cannot be accomplished in a sensible manner, and an attempt to force this
separation (as in Ref. 5, where the receptivity due to surface waviness was examined) may
result in misleading conclusions. This, we believe, is the reason for the observed overshoots
in Ref. 5 in the amplitude of the homogeneous solution in vicinity of the lower branch
location, although on physical grounds one would expect a spatially-monotonic transfer
of energy to the instability wave. It should be noted that the spatially-periodic problem
lea.drsr bhly to a transient resonance, and, theréf&e; no singularity is expected in the total
solution. Therefore, separating the particular and homogeneous solutions leads to artificial

spikes in each component, each of them having little physical meaning.

Figure 5b shows that the magnitude of the effective coupling coefficient increases
rapidly in vicinity of R, (=~ 1037, indicated by an open circle in the figure), and remains
nearly constant in most of the unstable region. More specifically, it is seen from Fig. 5¢

that the dominating contributions to |C}| are produced in a fairly small Reynolds-number
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range, of approximately 800-1200. Similar behaviour was also observed at other values of

the frequency parameter.

Figure 6a shows the effective coupling coefficient, C(9), after being normalized
by the wall suction parameter f(u}), as a function of the Reynolds number R)- based on
the wavelength of the wall suction distribution. Analogous results for the wall-admittance
problem are shown in Fig. 6b. In both figures, results are plotted for {frequencies ranging
from f = 20 x 107° to f = 55 x 107%. The corresponding N-factors are between approx-
imately 12 and 4, and, hence, the above range covers the frequencies of interest in both
laboratory and flight applications. Figures 6a-b show that the receptivity at each frequency-
is mainly concentrated in a narrow range of wavelengths, with the effective coupling coefli-
cient dropping off in a rapid but nearly symmetric manner away from the peak location. In
view of the discussion in the previous paragraphs, it is not surprising that the wavelength
corresponding to the maximum receptivity is equal to the T-S wavelength at the lower

branch location.

The rapid change in |C?| in the vicinity of the resonant wavelength indicates
the rather dramatic effect receptivity might have upon the performance of the LI'C system
under certain circumstances. In particular, if the free-stream disturbances are dominated
by the engine noise, in particular its discrete components corresponding, for example, to the
harmonics of the blade-passing frequency, then it becomes imperative to avoid suction-strip
spacings which are integer multiples of the neutral T-S wavelength at such frequencies. If
sufficient attention is not paid to these issues during the design process, slight variations
in the unit Reynolds number could increase the receptivity by an order of magnitude, as
shown by figures 6a and 6b.

The envelopes of the curves in Figs. 6a,b demonstrate how the maximum possible
receptivity varies with the free-stream disturbance frequency, or alternatively with the
wavelength of the surface nonuniformity distribution. For the purpose of comparison, we
have also shown the stationary phase result (2.16) as the dashed curve in these figures. As

one can see, there is an excellent agreement between the two results in the entire range
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of frequencies. One may observe that the maximum receptivity increases fairly rapidly
as the frequency parameter decreases. However, since the shape of the individual curves
appears to insensitive to the value of f, perhaps a more appropriate way to characterize this
type of receptivity would be to consider the effective couping coefficient as a function of the
det\mfirﬁg of the forcing Wa,venumber With respect to the Aresron’arnt value. In fact, considering
the success of the stationary phase _rééult, one could‘ also rescale the brdigate by utilizing

simple order of magnitude estimates obtained throuéh (216) used in conjunction with the

P R ——_—

standard high Reynolds number asymptotic theory of T-S waves!*?l, Figures 7a,b show the

results from Figs. 6a,b replotted with the new absissca corresponding to the wavenumber

detuning parameter expressed as a percentage, and the ordinate being scaled by the coupling
coefficient in the zero detuning case. It is clear that, in each case, the different curves have
nearly collapsed onto each other, indicating that the dependence of the coupling coefficient

on the detuning parameter is practically independent of the frequency parameter in the

range of interest.

4. SUMMARY AND CONCLUDING REMARKS

In this paper, we have examined a simpﬁﬁéderoﬁlem related to the acoustic
receptivity of boundary layers over airfoil surfaces equipped with laminar flow control sys-
tems. This model problem involves the generation of instability waves in a non-compact
region of short-scé}é f;?fiétfdﬂs in the surface suction velocity and/or admittance of the

porous surface. In particular, it was shown how the results for semi-compact or localized

regions of instability, i.e., regions which are comparable to the instability wavelength in
their streamwise extent, can be conveniently extended to more general situations. The
principal conclusions of this study are summarized below:

1. The same underlying physics behind the wavelength reduction process in localized

receptivity problems also applies in the distributed case.

2. The major difference between the localized and distributed receptivity problems is

related to the magnitudes of the respective coupling coefficients, which are much

larger in the latter case, by a factor of O R>/% based on asymptotic arguments.
g Lb. g
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3. Most of the receptivity in the distributed case still occurs in a relatively short
region, of length O(R?ff*), in the vicinity of the lower branch of the neutral
stability curve. This also implies that non-parallel effects can, again, be neglected

to the leading order in modelling this class of receptivity problems.

4. The receptivity due to spatially homogeneous distributions of surface suction and
admittance is dominated by a narrow band of Fourier harmonics, which involve a
detuning of less than about 10% with respect to the neutral instability wavenumber

at the lower branch location.

5. The functional variation of the effective coupling coefficient with respect to the
detuning parameter is nearly independent of the frequency of the external distur-

bance.

Having stated the conclusions, we would like to summarize the limitations of the
present results, and also suggest possible ways to overcome these limitations. As mentioned
before, the limitation to weak suction and admittance variations is mainly a theoretical one,
and, not likely to impede the application of the theory to real world problems. Perhaps
the principal limitation of the results in Section 3 stems from neglecting the role of surface
nonuniformities in modifying the stability of the base flow and in downstream scattering
of the instability waves produced by upstream variations in wall-suction or admittance.
Much of the stability modification really comes from the mean (spatially averaged) suction
level, since the accompanying variations only lead to an alternating pattern of stabilization
(in regions where the suction is larger than the mean) and destabilization (where there is
no suction or the suction level is below the mean), the net effect of which is of a higher
order as far as stability properties are concerned. However, these variations, in addition
to producing receptivity, also scatter a small fraction of the instability waves coming from
upstream. The relative effect of these neglected phenomena is locally of O(efuj)), and their
neglect can, therefore, be justified even on the longer length scale of the receptivity process
by placing additional restrictions on the magnitudes of the surface suction and admittance

parameters. For practical applications, however, the accuracy of the coupling coefficients
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may be affected somewhat significantly by the errors introduced by these approximations,
especially the one related to the influence of mean suction.

Fortunately, the basic framework described in Section 2 appears to be flexible
enough to incorporate both of these effects in a relatively straightforward fashion. The
enhanced stability due to the use of suction may be accounted for by incorporating the
mean suction into the base flow T and computing the relevant quantitiesr(such as ars and
AUy on the basis of this modified brcn)lrmdzaryr—layer profile. Due to the nonsimilar nature of
¥y, however, this would also mean repeating the entire calculation, incluaing the efficiency
functions AY) for each configuration of interest. The issue of instability wave scattering
by surface nonuniformities has just begun to be analyzed in recent years, although it had
préviouﬂy been looked into in great detaﬂm relation téwtrlilréﬂscattérihg of radio waves (and
also acoustic waves) by distributed surface topography. Again, it would be possible to
incorporate the scattering coefficients from a local calculation, such as that of Zhang and
Kerschen!*® for the wall-admittance problem, into the amplitude evolution equation along
much the same lines as the present géhef&ﬁzﬁﬂon of the instability wave “production” from
local coupling coefficients to larger distances.

Finally, even though the nonparallel effects are asymptotically small, and are
expected to be numerically small as well, if and when they do become significant in a
numerical sense, they can be accommodated fairly easily by using results from the usual
weakly-nonparallel theory. In such a case, one simply needs to replace the quasiparallel

phase function, Org, in (2.12) with its nonparallel counterpart.

Overall, the present analysis provides a convenient tool to study the receptivity
in arbitrary nonlocalized geometries, instead of just quasiperiodic distributions. Note that
the problem of receptivity due to vrvarlilrsucrtrirén/ admittance variations is somewhat simpler
in that one may assume a complete knowledge about the respective distributions for esti-
mating the receptivity. I&onjeoy'er, due Vtowthe multiple strip/slot configurations, the spatial
spectra involved are discrete in nature. In contrast, the problem of roughness-induced re-

ceptivity involves both systematic distortions of the surface (related to surface joints and
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fastenings) and random ones originating during the manufacturing process itself, or arising
during operation (e.g., skin erosion, insect debris, etc.1?8]), In addition, the spectrum of
surface imperfections inevitably include both discrete and continuous components. The
deterministic part of this problem can be handled along much the same lines as here; how-
ever, the random component will require accounting for the stochastic nature of the forcing.
Understanding the receptivity process in wide-band, as well as random, disturbance envi-
ronments is indeed a daunting task, but one for which the prognosis appears quite promising
at the present time, especially in the experimental direction; see Kendalll*4l, As a first step
towards addressing such issues theoretically, we have considered the interactions involving
random surface-disturbance fields, and the results of this investigation are being reported

in a separate paper.
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Table 1
Receptivity due to multiple strip configurations

| case no. || region of suction | no. of strips | type of distribution l |CW] |

(1) R < Ry, 12 uniform = 1.0 902
(i) Riy < R< Rus. | 48 uniform = 1.0 829
(iii) R < Ry, 60 uniform = 1.0 1639
(iv) Rip. < R < Ry, 48 concentrated near 997

neutral locations;
1.2 in outer 3rds,
0.6 in middle 3rd.
(v) Ry, < R< Ryyp. 48 concentrated in 620
the middle of
the unstable region;
1.5 in middle 3rd,
0.75 in outer 3rds.
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backing cavity

Fig. 1a  Schematic of the laminar flow control system using distributed suction through a porous

sutface.

Fig. 1h  Sketch of the coordinale systen:.

36



25 L] l L4 l L] l L I 1
20
15 F
OS -
10
5 o \ [}
Y \\ “\ oA ‘\- M
i U7 T,
\ Ve ‘,\ \\ // '
0 I 1 1 1 2 l‘l,‘\/ ‘J' [\ i
0.0 0.5 1.0 1.5 2.0 2.5 x10°
R=A\U.x"/V'
Fig. 2 Magnitudes of the efficlency functions A, j=1-2

from Eqs. (2.9-2.12) as functlons of the wall inhomogeneity location
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(a) Receptivity due to wall suctlon varlation (j=1)
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Fig. 2

@)

Magnitudes of the efficlency functions /\U). j=1-2

from Eqs. (2.9-2.12) as functions of the wall inhomogeneity location
R with fy = 10° x w'v‘/(lf,2 as a parameter.

(b) Receptivity due to wall admittance variation (j=2)
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(a) Receptivity due to wall suction variation
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(b) Receptivity due to wall admittance variation
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